Epidemiological Data of Occupational Exposure to HIV amongst Health Care Professionals who received Post-exposure Prophylaxis at a Health Care Centre at Nagpur

Milind Bhrushundi

ABSTRACT

Introduction: High number of People living with HIV (PLHIV) in the state, put Health Care Professionals (HCPs) at risk of contracting the disease through occupational injuries. Still there is lack of data from the state on epidemiology of factors associated with occupational exposure to HIV among HCPs requiring Post-exposure Prophylaxis (PEP).

Materials and Methods: In this retrospective observational study, which was conducted at a Private healthcare centre at Nagpur, record of all 153 HCPs, who received PEP, was collected from 2009 to 2016 as per the protocol based on NACO recommendations. Descriptive analysis was done of collected data in the form of frequencies and percentage.

Results: Among the study population, 53% were women. 61% HCPs were from the age group 21-30 years. Nurses (32%) and resident doctors / interns (22%) were at higher risk as they required and received PEP the most. The most accident-prone modes of exposure were IV line securing / injection (34%) and recapping of needle (23%). 92% of exposed HCPs reported injury within first 72 hours. In 81% HCPs receiving PEP, HIV status of source patient was known to be positive at the time of accidental exposure. Out of these, 27% were having CD4 + count less than 200 cells/mm 3. 78% HCPs who received PEP completed all follow up schedules and none of them had sero-conversion.

Discussion: HCPs are at higher risk of occupational exposure to HIV. Nurses and resident doctors/ interns are particularly at greater risk as they work in close contact with patients' blood and body fluids. Needle-stick injuries are the commonest form of occupational accidents especially through recapping of needle and IV line setting. Awareness among HCPs regarding occupational injuries seemed to be fair as majority of study population reported within 72 hours of accidental exposure. PEP course seemed to be effective as none of the PEP recipients showed seroconversion.

Conclusion: Despite fair awareness of occupational injuries to HIV source, the occurrence of avoidable practices like needle-stick injuries was found to be most prevalent. This warrants the need for better training, stress management and safety practices in health care set up.

Introduction:

The pandemic of Human Immunodeficiency Virus / Acquired Immunodeficiency Syndrome (HIV / AIDS) in its third decade has blown into a major public health problem of enormous size. Globally, India has the third largest HIV epidemic. Prevalence of HIV, in 2013, was estimated to be 0.3%. Though India is categorized as a low HIV prevalence nation but considering 120 crore Indian population this equates to 22.1 lakh people living with HIV. An estimated 130,000 people died from AIDS-related illnesses in 2013. Among Indian states, Maharashtra stands second in having highest number of PLHIV (3.01 Lakh) preceded by Undivided Andhra Pradesh and Telangana (3.95 lakh). There is no enough data available on HIV in Vidarbha. According to A study estimated sero-prevalence of HIV infection in tertiary care hospital at Akola (Vidarbha) was 4.5%.

Healthcare Professionals (HCPs) run a risk of infection with HIV after an occupational injury. Approximately 30 lakh percutaneous exposures occur globally among HCPs each year. Average risk for HIV transmission after a percutaneous exposure to HIV-infected blood and to mucous membrane has

Consultant Physician
Lata Mangeshkar Hospitals, Nagpur

Address for Correspondence -
Dr. Major Milind Bhrushundi
E-mail: bmili@yahoo.com
been estimated to be approximately 0.3% and 0.09% respectively. Though episodes of HIV infection after non-intact skin exposure have been documented, the average risk for the transmission by this route is not known but is estimated to be less than that for mucous membrane exposures. The average risk for transmission of HIV after exposure to fluids or tissues other than HIV-infected blood also has not been quantified but is estimated to be lower than that for blood exposures. Medical and nursing students who are at a higher risk of blood-borne infection from unsafe practices 11-33% reported injuries with sharp instruments while on duty. The factors associated with higher risk of HIV transmission are: deeper injuries, visibility of blood on the sharp device, a procedure involving a needle that was in the source patient's artery or vein. Though the absolute risk of HIV transmission appears to be small, the occupational injury often induces stress and anxiety in exposed individuals.

Post-Exposure Prophylaxis (PEP) comprises of administering a short course of Anti-Retroviral Therapy (ART) to lessen the probability of seroconversion following exposure to HIV. A combination of drugs with activity at different stages in the viral replication cycle may offer a greater preventative effect in PEP. Largely, PEP process encompasses first aid, counselling, risk assessment, relevant laboratory investigations with the consent of the exposed individual and source, followed by administration of a short course of ART for a period of 28 days with monitoring. PEP is believed to prevent seroconversion by as much as 81%. Rapidity of thought and act is critical as the space for opportunity to prevent systemic viral dissemination is tiny. Based on these outcomes, CDC (Centre for Disease Control) and NACO (National AIDS Control Organization) recommended the use of PEP program to prevent HIV seroconversion which was adopted and adapted at our centre.

Despite the high number of PLHIV in Maharashtra, which places HCPs at a high risk of contracting HIV at their work places, there is little data available of occupational exposure to HIV. There is dearth of appropriate documentation showing the extent of PEP use among HCPs following exposure. This study assessed use of PEP and its associated factors among HCPs at Nagpur region of Maharashtra with a belief that interpretations of this study, will be beneficial not only to HCPs in enhancing their awareness about PEP but also to establish an effective local planning for care, treatment and preventive strategies.

Materials and Methods:

Study Design and Setting - This was a retrospective observational study. It was done at Private hospital situated at Nagpur.

Study Duration and Study Population - In the present study, records of exposed HCPs were maintained starting from 2009 to 2016. 153 such exposed HCPs received PEP during this period.

Data Collection and analysis - The data was collected as per the protocol developed for the study which was largely based on the guidelines given by NACO14, 15 and CDC16, 17. Based on guidelines, till 2014-15 PEP regimen was decided according to Exposure Code (EC) and Source code (SC). Basic regimen containing two drugs, Zidovudine (ZDV) and Lamivudine (3TC) or Tenofovir (TDF) and Lamivudine (3TC), was offered to mild (EC2 SC1 or EC1 SC2) exposure. Expanded regimen containing three drugs combination i.e. TDF / 3TC or ZDV / 3TC and a Protease inhibitor Lopinavir and ritonavir was offered to severe (EC2 SC2 and more) exposure. Expanded regimen containing three drugs combination i.e. TDF / 3TC or ZDV / 3TC and a Protease inhibitor Lopinavir and ritonavir was offered to severe (EC2 SC2 and more) exposure. During later years Exposed individuals were given TDF / Emtricitabine (FTC) + raltegravir for 28 days (CDC recommendations) or TDF/FTC + Efavirenz (EFV) (NACO recommendations). Expert consultation was considered for complex cases. While starting PEP regimen the details which include ART regimen of source patient, adherence and drug failure were taken into consideration.

Demographic and clinical data were collected. A risk assessment was performed after taking into account the mode of injury, the HIV status of the source patient, the HIV viral load of the source patient and the circumstances surrounding the injury.
modes (practices) in health care set up. The commonest mode which made 34% HCPs to start on PEP was during setting up IV line/ injection in patients. 23% of HCPs seek PEP following exposure to HIV during recapping of needles, while 12% were initiated with PEP after accidental exposure to infected spills from source patients. Least chances of accidental injuries was found to be with procedures like blood sample collection (1%), FNAC procedure (3%) and exposure to splash during surgery or delivery. All needle-stick injuries among HCPs counted for 73% (111) and others were 27% (42).

Figure 1 : Occupation of the exposed HCPs

Even being in a healthcare profession, variability in time to report the accidental injury was seen among the exposed HCPs which is shown in **Figure 3**. 63% (96) exposed HCPs who received PEP succeeded in reporting the accident within 24 hours of the exposure. 92% (140) actually reported the injury and started on PEP within 72 hours of accidental exposure while only 8% (13) took more than 72 hours to report.
3. Source Description: Out of all 153 HCPs who received PEP, 81% (124) accidental exposures occurred from known HIV positive sources while in 19% accidents HIV status of the source was not known at the time of exposure but became evident only when source patient was tested for sero-status after the occupational exposure.

Out of 124 HIV+ sources, 27% (33) were with CD4+ count less than 200 cells/mm3 while 13% (16) source cases were having CD4+ count more than 500 cells/mm3.

4. Final outcome: Figure 4 depicts, at the end of 6 months of follow-up, no exposed HCP was found to be HIV positive. 119 (78%) exposed HCPs found to be HIV negative at the end of follow-up period while 34 (22%) were lost to follow up.

Discussion:

Maharashtra is the state with estimated HIV prevalence (0.44%) which is greater than national prevalence (0.26%). This places the HCPs in Maharashtra professionally at major risk. Ironically, only a few studies have been published on occupational exposures in HCPs who received PEP. With an attempt to generate local data which would be of help in enhancing awareness, planning strategies and assessing impact of PEP among exposed HCPs, this study was planned.

Nurses have a major caring role that brings them in close contact with patients’ blood and body fluids. In our study, among the HCPs, highest 49 (32%) nurses received PEP. Hence, proper understanding of their professional behaviour is essential to evaluate and decrease the occupational exposure to HIV among them. This is in sync with few other studies who also found nurses at highest risk of acquiring occupational injury. A study conducted on HCWs (Health Care Workers) in Pune, great number of exposure reported among resident doctors (22.8%). Almost similar number (22%) of residents/interns also exposed to HIV and received PEP in our study. Data from a large study of US residents found that stretched work duration and night work among interns is associated with increased risk of percutaneous injuries. This may be due to their inexperience in practical procedures. Clarke et al. in their study, found that the likelihood of ever having a needle-stick injury was inversely related to years of experience. According to our study, least number of Gynecologists (1%) were exposed to Occupational injury to HIV which is contradictory to the finding of the study conducted in 1955 HCWs in Pune where nearly half of the reported exposures came from the Medicine and Obstetrics/Gynecology departments. This can be explained in a way as the above mentioned study collected data department-wise and was conducted in a teaching institute where resident doctors and interns constituted a major part of study population who do the most of the sample collections and other intervention-related work while our study had included consultant Gynecologists (who usually have trained staff for sample collection and routine interventions) and resident doctors/interns separately.
In current study, commonest mode which caused accidental injury among HCPs was IV line setting up/injection (34%) followed by recapping of needle (23%). Mode of highest number of exposures was needlestick (73%) in our study. Similar results were also found with a study where needlestick injuries were found to be 75.1%.

Further, results of a study in Iran introduced injection / blood sampling, surgical procedures and disposal of either the needle or angio-catheter as the most prevalent causes. While according to a study conducted by Kamali and Motamedi injuries due to recapping were most prevalent.

The various reasons for needle-stick injuries being the commonest at workplace can be as follows: firstly, an important line of defence, wearing gloves, is several times bypassed by HCPs, especially by nurses. Secondly, majority of the injuries occur not during use of needle itself, but rather during the handling between use and its disposal. Thirdly, physical fatigue due to long work hours and work-related stress can cause such accidents at workplace. This warrants the implementation of better training, stress management and safety practices in health set up.

NACO guidelines recommend that the first dose of PEP should be administered within the first 72 hours of exposure and hence, the reporting of the accident should be as soon as possible. Shokuhi et al in their study of 650 HCWs with occupational injury found out that 79.4% of exposed HCWs reported their injury in first 24 hours of injury. Winnie Sin et studied occupational exposure in 1525 HCWs concluded that majority (89.6%) received HIV post-exposure prophylaxis within 24 hours of exposure as they reported early. In present study, maximum 63% HCPs reported their injury within first 24 hours while 92% of total study population reported within 72 hours which points towards the awareness of reporting of occupational injury among HCPs was fair.

In our study, 81% (124) accidental exposures occurred from known HIV positive sources occupational while in 19% accidents HIV status of the source was not known at the time of occupational exposure and became evident only when source patient was tested for HIV with due consent after exposure. Out of 124 HIV positive sources, 27% (33) were with CD4+ count less than 200 cells/mm³ while 13% (16) source cases were having CD4+ count more than 500 cells/mm³. This information is of particular importance in evaluating risk of disease transmission to exposed individuals. There is also the need to investigate every occupational exposure for blood borne diseases like HIV, HBV and HCV.

In the current study, 119 (78%) exposed HCPs found to be HIV negative at the end of follow-up period while 34 (22%) were lost to follow up. At the end of 6 months of follow-up, no exposed HCP tested HIV sero-positive. Similar results with PEP regimens were found in other studies also.

Conclusion:
HCPs, in particular, nurses and resident doctors / interns are at higher risk of contracting HIV through occupational injuries. Despite fair awareness of occupational injuries to HIV source, the occurrence of avoidable practices like needle-stick injuries was found to be the commonest. This warrants the need for better training, stress management and safety practices in health care set up.

Bibliography:
15. National AIDS Control Organization (IN). Antiretroviral
17. Centers for Disease Control and Prevention (US). Updated
14. National AIDS Control Organization (IN). Management of
13. Cardo DM, Culver DH, Ciesielski CA, Srivastava PU,
11. Ministry of Health and Family Welfare : Government of
10. Dufresne MD, Alfandari S, Fontier C, et al. Tolerance,
8. Kuhar DT et al. Updated US Public Health Service
7. Centers for Disease Control and Prevention (US). Updated
5. Gupta A et al. High risk for occupational exposure to HIV
4. Vahedi MS, Ahsan B, Ardalan M, Shahsavari C. Evaluation
3. Gupta A et al. High risk for occupational exposure to HIV
2. Kermode M, Jolley D, Langkham B, Thomas MS, Crofts N.

8. Kuhar DT et al. Updated US Public Health Service
Guidelines for the Management of Occupational Exposures
to Human Immunodeficiency Virus and Recommendations
9. Adefolalu AO. Needle Stick Injuries and Health Workers: A
10. Dufresne MD, Alfantari S, Fontier C, e.a. Tolerance,
compliance and psychological consequences of post-
11. Ministry of Health and Family Welfare : Government of
India National AIDS Control Organisation. Management of
Occupational exposure including Post exposure prophylaxis for HIV. NewDelhi: NACO; 2009.
Z, et al. Assessment of knowledge, attitude and practice
towards post exposure prophylaxis for HIV among health
Care workers in Gondar, North West Ethiopia. BMC Public
13. Cardo DM, Culver DH, Ciesielski CA, Srivastava PU,
Marcus R, Abiteboul D, Hepstonstall J, Ippolito G, Lot F,
McKibben PS, Bell DM : A case-control study of HIV
seroconversion in health care workers after percutaneous
exposure. Centers for Disease Control and Prevention
(21) : 1485-1490.
14. National AIDS Control Organization (IN). Management of
15. National AIDS Control Organization (IN). Antiretroviral
therapy guidelines for HIV infected adults and adolescents
16. Centre for Disease Control and Prevention (US). Updated
U.S. Public Health Service Guidelines for the Management
of Occupational Exposures to HBV, HCV, and HIV and
17. Centers for Disease Control and Prevention (US). Updated
U.S. Public Health Service guidelines for the management
of occupational exposures to HIV and recommendations for
18. Division of AIDS (DAIDS) Table for Grading the Severity
source/safety/table_for_grading_severity_of_adult_pediatric_adverse_events.pdf?sfvrsn=6
last accessed in December 2016.

